
NASA/CR-97-206278

ICASE Report No. 97-72

NNIVERSARY

A Comparison of PETSC Library and HPF

Implementations of an Archetypal PDE Computation

M. Ehtesham Hayder

Rice University

David E. Keyes

Old Dominion University and ICASE

Piyush Mehrotra

ICASE

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contracts NAS 1-97046 & NAS 1-19480

December 1997

Available from the following:

NASA Center for AeroSpace Information (CASI)

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

A COMPARISON OF PETSC LIBRARY AND HPF IMPLEMENTATIONS OF AN

ARCHETYPAL PDE COMPUTATION *

M. EHTESHAM HAYDER t, DAVID E. KEYES$, AND PIYUSH MEHROTRA§

Abstract. Two paradigms for distributed-memory parallel computation that free the application pro-

grammer from the details of message passing are compared for an archetypal structured scientific computation

a nonlinear, structured-grid partial differential equation boundary valuc problem using the same al-

gorithm on the same hardware. Both paradigms, parallel libraries represented by Argonne's PETSc, and

parallel languages represented by the Portland Group's HPF, arc found to be easy to use for this prob-

lem class, and both are reasonably effective in exploiting concurrency after a short learning curve. The

level of involvement required by the application programmer under either paradigm includes specification of

the data partitioning (corresponding to a gcometrically simple decomposition of the domain of the PDE).

Programming in SPMD style for the PETSc library requires writing the routines that discrctize the PDE

and its Jacobian, managing subdomain-to-processor mappings (affine global-to-local index mappings), and

interfacing to library solver routines. Programming for HPF requires a complete sequential implementa-

tion of the same algorithm, introducing concurrency through subdomain blocking (an effort similar to the

index mapping), and modest experimentation with rewriting loops to elucidate to the compiler the latent

concurrency. Correctness and scalability are cross-validated on up to 32 nodes of an IBM SP2.

Key words. Parallel languages, parallel libraries, parallel scientific computing, nonlinear elliptic bound-

ary value problems

Subject classification. Computer Science

1. Introduction. Parallel computations have advanccd, and continue to advance, through innovations

in both numerical algorithms and system software technology. Algorithmic advances permit more rapid

convergence to more accurate results with the same or reduced demands on processor, memory, and commu-

nication subsystems. System software advances provide more convenient expression and greater exploitation

of latent algorithmic concurrency, and take improved advantage of architecture. These advances can be

appropriated by application programmers through thc somewhat complementary means of libraries and

languages.

Unfortunately, the development and tuning of a parallel numerical code from scratch remains a difficult

and time-consuming task. The burden on the programmer may be reduced if thc high-levcl programming

language itself supports parallel constructs, which is the philosophy that underlies the High Performance

Fortran [18] extensions to Fortran. With varying degrees of hints from programmers, the HPF approach

leaves the responsibility of managing concurrency and data communication to the compiler and runtime

system.

*This work was supported by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-97046

and NAS1-19480, while the authors were in residence at the Institute for Computer Applications in Science and Engineering,

MS 403, NASA Langley Research Center, Hampton, VA 23681-0001. Execution time on the NASA SP2s was provided through

the Ames/Langley NAS Metacenter, under the Computational Aero Sciences section of the High Performance Computing and

Communication Program.

tCenter for Research on Parallel Computation, Rice University, hayder¢ca.rice.edu,

_Computer Science Department, Old Dominion University and ICASE, keyesQ±ease.edu

§Institute for Computer Applications in Science and Engineering pm©icase.edu

Libraries offer a mid-level solution, and are based on the philosophy that, for high performance, program-

mcrs must become involved in the concurrency detection, process assignment, interprocess data transfi_r, and

process-to-processor mapping - but only once for each algorithmic archetype. A library, perhaps with mul-

tiple levels of entry to allow the application programmer to employ defaults or to exert detailed control, is

the embodiment of algorithmic archetypes. One such popular parallel library is PETSc [2], under continuous

expansion at Argonne National Laboratory since 1991. PETSc provides a wide variety of parallel numerical

routines for scalable applications involving the solution of partial differential and integral equations, and

certain other regular data parallel applications. It uses message passing via MPI and assumes no physical

data sharing or global address space.

Controversy surrounds the selection between the paradigms of languages and libraries, leading to hes-

itation to commit to either one among users who would come to parallelism only as a means to an end,

and not as an interesting research subject in itself. There arc few archivally available unbiased comparisons

on a common set of problems to aUeviatc the confusion. Reasons for the lack of experimental guidance on

a topic of such practical importance may includc: the lack of universally compelhng readily downloadablc

bcncbmlark problems beyond the kernel or subroutine level, reluctance to invest the time to create credible

expressions of the same problem in the two paradigms, and fear of having such results quoted with insufficient

context for their careful interpretation. Since one of us (MEH) is in the position of counseling computational

engineers and scicntists on the verge of parallel code ports, and since the other two of us are each reasonably

invested in one of the paradigms, but always curious about developments in the other, we have begun to

undertake some systematic comparisons, of which this contribution is "Part I."

In this study we consider a simple problem representative of low-order structured-grid discretizations of

nonlinear elliptic PDEs the so-called "Bratu" problem and we implement the same popular solution

algorithm using both paradigms, i.e., the PETSc library and the HPF language. The algorithm is a Newton-

Krylov method with subdomain-concurrent ILU preconditioning, also known as a Newton-Krylov-Schwarz

(NKS) method [15]. Its basic components arc typical of other algorithms for PDEs: (1) sparse matrix-vector

products (together with Jacobian matrix and residual vector evaluations) based on rcgular multidimensional

grid stencil operations, (2) sparse triangular solution recurrences, (3) global reductions, and (4) DAXPYs.

Our goal is to examine the performance and scalability of these two different programming paradigms for

this broadly important class of scientific computations.

During the concurrent development of our implementations, each of the two implementations played a

role in tuning the other to make better use of the underlying software and hardware. We ceased seeking

improvements when we felt that generality that would be useful to retain in an application code would bc

sacrificed. This required some judgments that others might make differently. For instance, we feel that a

diagonal storage format is most natural for a PDE code with a uniform discretization stencil, and we used

this format in HPF. However, the PETSc library diagonal storage format is not currently as highly optimized

as the more gcncral and widely employed sparse compressed row format, so we employed the latter.

We consistently specialized both codes for the case of a scalar equation and we consistently refrained from

specializing both codes for the case of constant coefficients, though it would have been trivial to exploit the

latter for parts of both implementations. Implementation decisions such as these can affect the bottom line

of a performance study in a major way, so wc give examples of our reasoning. The difference in performance

between code written for a scalar equation and for multicomponent systems of equations is considerable, since

problems with n_ components defined at each grid point lead to n_ × he-block dense linear algebra at every

grid point, at every matrix-vector or preconditioning step. If this double inner loop is retained in a single-

componentproblem,thereisnoticeableoverhead without amortization. Scalar problems benefiting from a

parallel NKS algorithm arise in practice (e.g., the transonic full potential problem in [5}), so specialization for

nc = 1 is realistic. Specializing for constant coefficients can also lead to a significant performance benefit in

memory traffic and compilation optimization. However, a production code for a constant-coefficient problem

would make use of more specialized and far less flexible algorithms (e.g., based on FFTs), so we left the

coefficient data structures more general than our model problem strictly required.

With relatively modest effort, we obtain similar and reasonable performance using both paradigms. Our

study is preliminary only, since it is confined to a single parallel platform (the IBM SP2) and a single,

scalar PDE example based on a structured, uniform grid. Taking the perspcctive that the PETSc library

represents a state-of-the-art message-passing implementation, we conclude that HPF compilers have achieved

their promise on the class of structured index-space computations targeted by the HPF 1 standard.

The organization of this paper is as follows. Section 2 describes a modcl nonlinear PDE problem

and its discretization and solution algorithm. Sections 3 and 4, respectively, discuss the PETSc and HPF

implementations of the algorithm. The performance of the implementations is compared, side-by-side, in

Section 5, and we conclude in Section 6. Our target audience includes both potential users of parallel systems

for PDE simulation and developers of future versions of parallel languages and libraries. For the lattcr, we

go into some detail on our algorithmic framework of Newton-Krylov-Schwarz. It is not novel, but it is

progressive, and it cannot be found in textbooks as a composite framework. For the former, we encourage

looking beyond the very simple model problem described herein to more advanced applications of PETSc,

such as the CFD applications in [5, 12, 14]. Two of these three applications involve global structured grids

and would bc amenable to an HPF implementation, as well.

2. Problem and Algorithm. Our test case is a classic nonlinear elliptic PDE, known as the Bratu

problem. In this problem, heat generation from a combustion process is balanced by heat transfer due to

conduction. The model problem is given as

(2.1) -V2u - Ae" = 0,

with u = 0 at the boundary, where u is the temperature and _ is a constant known as the Frank-Kamenetskii

parameter. The Bratu problem is a part of the MINPACK-2 test problem collection [1] and is implemented

in a variety of ways in the distribution set of demo drivers for the PETSc library, to illustrate different

features of PETSc for nonlinear problems. There are two possible steady-statc solutions to this problem for

a given value of A. One solution is close to u = 0 and is easy to obtain. A close starting point is needed to

converge to the other solution. For our model case, we consider a square domain of unit length and .k = 6.

W'e use a standard central difference scheme on a uniform grid to discrctize (2.1) as

(2.2) f(u) = 4ui,j - ui-l,j - ui+l,j - ui,j-1 - ui,j+l - h2ke u''_ --- O,

where f is the vector function of nonlinear residuals of the vector of discrete unknowns u, defined at each

interior and boundary grid point: ui,j _ u(xi,Yj); xi _ ih, i = 0, 1,..., n; yj =- jh, j = 0, 1,...n, h ---- 1.
n

The discretization leads to a nonlinear algebraic problem of dimension (n + 1) 2, with a sparse Jacobian

matrix of condition number (.9(rt2), asymptotically in n, for fixed)_. The typical number of nonzeros per row

of the Jacobian is five, with fewer in rows corresponding to boundary points of the physical domain. The

algorithmic discussion in the balance of this section is sufficient to understand the main computation and

communication costs in solving (2.2), but we defer full parallel complexity studies, including a discussion of

optimal parallel granularities, partitioning strategies, and running times to the literature, e.g. [11, 16].

Outer Iteration: Newton. We solve (2) by an inexact Newton-iterative method with a cubic back-

tracking line search [9]. We use the term "inexact Newton method" to denote any nonlinear iterativc method

for solving f(u) = 0 through a sequence of iterates u t -- u _-1 + _ - 5u _, beginning with an initial iteratc

u °, where c_ is determined by some globalization strategy, and _u _ approximately satisfies the true Newton

correction linear system

(2.3) f'(u _-1) $u = -f(u_-l),

in the sense that the linear residual norm IIf'(u _-1) _u _ + f(u_-l)ll is sufficiently small. Typically the RttS

of the linear Newton correction equation, which is the negative of the nonlinear residual vector, f(u e-l),

is evaluated to full precision. The inexactness arises from an incomplete convergence employing the true

Jacobian matrix, ft(u), freshly evaluated at u t-l, or from the employment of an inexact or a "lagged"

Jacobian.

An exact Newton mcthod is rarely optimal in tcrms of memory and CPU resources for large-scale

problems, such as finely resolved multidimensional PDE simulations. The pioneering work in showing that

properly tuned inexact Newton methods can save cnormous amounts of work over a sequencc of Newton

iterations, while still converging asymptotically quadratically, is [8]. We terminate the nonlinear iterations

at the e for which thc norm of the nonlinear residual first falls below a threshold defined relative to the initial

residual:]lf(u_)ll:/llf(u°)l I < rr_l. Our vr_l in Section 5 is a loose 0.005, to keep total running times modest

in the unprcconditioncd cascs considered below, since the asymptotic convergence behavior of thc method

has been well studied elsewherc.

Inner Iteration: Krylov. A Newton-Krylov method uses a Krylov method to solve (2.3) for _u l.

From a computational point of view, one of the most important characteristics of a Krylov mcthod for

the linear systcm Ax = b is that information about the matrix A needs to be accessed only in the form

of matrix-vector products in a relatively small number of carefully chosen directions. When the matrix A

represents the Jacobian of a discretized system of PDEs, each of these matrix-vector products is similar

in computational and communication cost to a stencil update phase of an explicit method applied to the

same set of discrete conservation equations. Periodic nearest-neighbor communication is required to "ghost"

the values present in the boundary stencils of one processor but maintained and updatcd by a neighboring

processor.

We use the restarted generalized minimum residual (GMRES) [21] method for the itcrative solution of
m

the linearizcd equation. CMRES constructs an approximation solution x --)-_-i=1 civi as a linear combina-

tion of an orthogonal basis vi of a Krylov subspace, K = {r °, Ar °, A2r °, ...), built from an initial residual

vector, r° = b - Ax a, by matrix-vector products and a Cram-Schmidt orthogonalization process. This

Gram-Schmidt process requires pcriodic global reduction operations to accumulate the concurrently par-

tially summed portions of the inner products. We employ the conventional modified Gram-Schmidt process

that reduces each inner product in sequence as opposed to the more communication-efficient version that

simultaneously reduces a batch of inner products. In well-preconditioned time-evolution problems, we often

prefer the batched version.

Restarted GMRES of dimension m finds the optimal solution of Ax = b in a least squares sense within the

currcnt Krylov space of dimension up to m and repeats the process with ancw subspacc built from the residual

of the optimal solution in the previous subspace if the resulting linear residual does not satisfy the convergence

criterion. The residual norm is monitored at each intermediate stagc as a by-product of advancing the

iteration. CMRES is well-suited for inexact Ncwton mcthods, since its convergence can be terminated at

anypoint,withanoverallcostthatismonotonicallyandrelativelysmoothlyrelatedtoconvergenceprogress.
ByrestartingGMRESat relativelyshortintervalswecankeepitsmemoryrequirementsbounded.However,
a globalconvergencetheoryexistsonlyfor thenonrestartedversion.Forproblemswithhighlyindefinite
matrices,rn may need to approach the full matrix dimension, but this does not occur for practically desired

,k in (2.2).

We define the GMRES iteration for _u t at each outer iteration g with an inner iteration index, k =

0, 1,..., such that _u t'° ==-0 and _u _'_ --- (fut. We terminate CMRES at the k for which the norm of the linear

residual first falls below a threshold defined relative to the initial: Ill (ut- 1) + f,(u e- 1) 6u_,k I]/1I f (ut- 1)[i <

aTet, or at which it falls below an absolute threshold:]lf(u _-1) +ft(ut-1) but'hi] < a_bs. In the experiments

reported below, crr_l is 0.5 and nabs is 0.005. (Ordinarily, in an application for which it is easily afforded

with good preconditioning, such as this one, we would employ a tighter aTe_. However, we wish to compare

preconditioned and unpreconditioned cases while keeping the comparison as uncomplicated by parameter

differences as possible.) A relative mix of matrix-vector multiplies, function evaluations, inner products, and

DAXPYs similar to those of more complex applications is achieved with these settings. The single task that

is performed more frequently relative to the rest than might occur in practice is that of 3acobian matrix

evaluation.

Inner Iteration Preconditioning: Schwarz. A Newton-Krylov-Schwarz me-

thod combines a Newton-Krylov (NK) method, with a Krylov-Schwarz (KS) method. If the Jacobian A is

ill-conditioned, the Krylov method will require an unacceptably large number of iterations. The system can

be transformed into the equivalent form B-lAx = B-lb through the action of a prcconditioner, B, whose

inverse action approximates that of A, but at smaller cost. It is in the choice of preconditioning where the

battle for low computational cost and scalable parallelism is usually won or lost. In KS methods, the pre-

conditioning is introduced on a subdomain-by-subdomain basis through convenient concurrently computable

approximations to local Jacobians. Such Schwarz-type preconditioning provides good data locality for par-

allel implementations over a range of parallel granularities, allowing significant architectural adaptability

[12]. In our tests, the preconditioning is applied on the right-hand side; that is, we solve My = b, where

M = AB-1, and recover x = B-ly with a final application of the preconditioncr to the y that represents

the converged solution.

Two-level Additive Schwarz preconditioning [10] with modest overlap between the subdomains and a

coarse grid is optimal for this problem, for sufficiently small A. However, for conformity with common

practice and simplicity of coding, wc employ a "poor man's" Additive Schwarz, namely single-level zero-

overlap subdomain block Jacobi. We further approximate the subdomain block Jacobi by performing just

a single iteration of zero-fill incomplete lower/upper factorization (ILU) on each subdomain during each

preconditioner phase. These latter two simplifications (zero overlap and zero fill) save communication, com-

putation, and memory relative to preconditioners with modest overlap and modest fill that possess provably

superior convergence rates. Domain-based parallelism is recognized by architects and algorithmicists as the

form of data parallelism that most effectively exploits contemporary multi-level memory hierarchy micro-

processors [7, 17]. Schwarz-type domain decomposition methods have been extensively developed for finite

difference/element/volume PDE discretizations over the past decade, as reported in the annual proceedings

of the international conferences on domain decomposition methods (see, e.g., [4] and the references therein).

The trade-off between cost per iteration and number of iterations is variously resolved in the parallel implicit

PDE literature, but our choices are rather common and not far from optimal, in practice.

Io

08

o6

04

o2

oo

o.I

06

04

02

oo

!', f, l I

o.0 O.S ' ' ,:o ,!5 x

FIG. 2.1. Contour plots o.f initial condition and converged solution

Algorithmic Behavior. Contours of the initial iterate (u °) and final solution (u °°) for our test case are

shown in Fig. 2.1. Figure 2.2 contains a convergencc history for Schwarz-ILU preconditioning on a 512 × 512

grid and for no preconditioning on a quarter-size 256 × 256 grid. The convergence plot depicts in a single

graph the outer Newton history and the sequence of inner GMRES histories, as a function of cumulative

GMRES iterations; thus, it plots incremental progress against a computational work unit that approximately

corresponds to the conventional multigrid work unit of a complcte set of stencil operations on the grid. The

platcaus in the residual norm plots correspond to successive values of [If(u_)l[, l = 0, 1,.... (There are five

such intermediate plateaus in the preconditioned case, separating the six Newton correction cycles.) The

typically concave-down arcs connecting the plateaus correspond to li/(u e-l) +/'(u e-l) _ue,kll, k = o, 1,...

for each 2. By Taylor's theorem f(u _) ,_ f(u _-1) +f'(u e-i) _ue+O((_ut)2), so for truncated inner iterations,

for which _u t is small, the Taylor estimate for the nonlinear residual norm at the end of every Newton step

is an excellent approximation for the true nonlinear residual norm at the beginning of the next Newton step.

We do not actually evaluate the true nonlinear residual norm more frequently than once at the end of each

cycle of GMRES iterations (that is, on the plateaus); the intermediate arcs are Taylor-based interpolations.

3. PETSc Implementation. Our library implementation employs the "Portable, Extensiblc Toolkit

for Scientific Computing" (PETSc) [2, 3], a freely available software package that attempts to handle through

a uniform interface, in a highly efficient way, the low-level details of the distributed memory hierarchy.

Examples of such details include striking the right balance between buffering messages and minimizing

buffer copies, overlapping communication and computation, organizing node code for strong cache locality,

allocating memory in context-sized chunks (rather than too much initially or too little too frequently), and

separating tasks into one-time and every-time subtasks using the inspector/executor paradigm. The benefits

to be gained from these and from other numerically neutral but architecturally sensitive techniques are so

significant that it is efficient in both the programmer-time and execution-time senses to express them in

general purpose code.

PETSc is a large and versatile package integrating distributed vectors, distributed matrices in several

sparse storage formats, Krylov subspace methods, preconditioners, and Newton-like nonlinear methods with

built-in trust region or line search strategies and continuation for robustness. It has been designed to provide

the numerical infrastructure for application codes involving the implicit numerical solution of PDEs, and

it sits atop MPI for portability to most parallel machines. The PETSc library is written in C, but may

be accessed from application codes written in C, Fortran, and C++. PETSc version 2, first released in

10 o

"o •

"_ 10-' "_ •

_J 10.2

- ILU preconditioning

No preconditioning

10 =3 _ L

1 10 100 1000

Number of GMRES steps

FIG. 2.2. Convergence histories of illustrative unpreconditioned (256 × 256) and global IL U-preconditioned (512 x
512) cases

June 1995, has been downloaded over a thousand times by users around the world. It is believed that there

are many dozens of groups actively employing some subset of the PETSc library. Two "Bring Your Own

Code" workshops featuring PETSc were offered during 1996-97, at ICASE and at the Cornell Theory Center.

PETSc has as "built-in" features relevant to computational fluid dynamicists, including matrix-free Krylov

methods, blocked forms of parallel preconditioners, and various types of time-stepping.

Data structure-neutral libraries containing Newton and/or Krylov solvers must give control back to

application code repeatedly during the solution process for evaluation of residuals, and Jacobians (or for

evaluation of the action of the Jacobian on a given Krylov vector). There are two main modes of imple-

mentation: "call back," wherein the solver actually returns, awaits application code action, and cxpccts to

be reinvokcd at a specific control point; and "call through," wherein the solver invokes application routines,

which access requisite state data via C0}_IfN blocks in conventional Fortran codes or via data structures

encapsulated by context variables. PETSc programming is in the context variable style.

Figure 3.1 (reproduced from [12]), depicts the call graph of a typical nonlinear application. Our PETSc

implementation of the method of Section 2 for the Bratu problem is petsc/src/snes/examples/tutorial/exSf. F

from the public distribution of PETSc 2.0.17 at http://www.mcs, anl.gov/petsc/. The figure shows (in

white) the five subroutines that must be written to harness PETSc via the Simplified Nonlinear Equations

Solver (SNES) interface: a driver (performing I/O, allocating work arrays, and calling PETSc); a solution

initializer (setting up a subdomain-local portion of u°); a function evaluator (receiving a subdomain-local

portion of u t and returning the corresponding part of f(ut)); a Jacobian evaluator (receiving a subdomain-

local portion of u e and returning the corresponding part of f'(ut)); and a post-processor (for extraction of

relevant output from the distributed solution). All of the logic of the NKS algorithm is contained within

PETSc, including all communication.

The PETSc executable for an NKS-based application supports a combinatorially vast number of algo-

rithmic options, reflecting the adaptive tuning of NKS algorithms generally, but each option is defaulted

so that a user may invoke the solver with little knowledge initially, study a profile of the execution, and

MainRoutine

$

ApplicationInitialization Function Jacobian (Post-Evaluation Evaluation Processing

FIG. 3.1. Schematic of call graph for PETSc on a nonlinear boundary value problem

progressively tune the solver. The options may be specified procedurally, i.e., by setting paramcters within

the application driver code, through a . petscrc configuration file, or at the command line. The command

line may also be used to override user-specified defaults indicated procedurally, so that recompilation for

solver-related adaptation is rarely necessary. (For instance, it is even possible to change matrix storage type

from point- to block-oriented at the command line.) A typical run was executed with the command:

mpirun -np 4 ex5f -mx 512 -my 512 -Nx 1 -Ny 4 -snes_rtol 0.005

-ksp_rtol 0.5 -ksp_atol 0.005 -ksp_right_pc -ksp_max_it 60

-ksp_gmres_restart 60 -pc_type bjacobi -pc_ilu_inplace-mat_no_unroll

This example invokes (default) ILU(0) preconditioning within a subdomain-block Jacobi prcconditioner, for

four strip domains oriented with their long axes along the x direction. For a precise interpretation of the

options, and a catalog of hundreds of other runtime options, see the PETSc release documentation. Furthcr

switches were used to control graphical display of the solution and output file logging of the convergence

history and performance profiling, the printing of which was suppressed during timing runs.

The PETSc libraries were built with thc options BOPT=0 PETSC_hRCH=rs6000, which invoke the -03

-qarch=pwr2 switches of the the xlc and xlf compilers on the SP2. IBM's own MPI was employed as the

communication library.

4. HPF Implementation. High Performance Fortran (HPF) is a set of extensions to Fortran, designed

to facilitate efficient data parallel programming on a wide range of parallel architectures [13]. The basic

approach of HPF is to provide directives that allow the programmer to specify the distribution of data

across processors, which in turn helps the compiler effectively exploit the parallelism. Using these directives,

the uscr provides high-level "hints" about data locality, while the compiler generates the actual low-level

parallel code for communication and scheduling that is appropriate for the target architecture. The HPF

programming model provides a global name space and a single thread of control allowing the code to remain

cssentially sequential with no explicit tasking or communication statements. The goal is to allow architecture-

specific compilers to transform this high-level specification into efficient explicitly parallel code for a wide

varicty of architectures.

HPF provides an extensive set of directivcs to specify the mapping of array elements to memory regions

referred to as "abstract processors." Arrays are first aligned relative to each other and then the aligned group

of arrays are distributed onto a rectilinear arrangement of abstract processors. The distribution directives

allow each dimension of an array to be independently distributed. The simplest forms of distribution are

block and cyclic; the former breaks the elements of a dimension of the array into contiguous blocks that

are distributed across the target set of abstract processors while the latter distributes the elements cyclically

across the abstract processors.

Data parallelism in the code can be expressed using the Fortran array statements. HPF itself provides the

independent directive, which can be used to assert that the iterations of a loop do not have any loop-carried

dependencies and thus can be exccuted in parallel.

HPF is well suited for data parallcl programming. However, in order to accommodate other programming

paradigms, HPF provides extrinsic procedures. These define an explicit interface and allow codes expressed

using a different language, c.g., C, or a different paradigm, such as an explicit message passing code, to be

called from an HPF program.

The first vcrsion of HPF, version 1.0, was released in 1994 and used Fortran 90 as its base language.

HPF 2.0, rcleased in January 1997, added new features to the languagc while modifying and deleting others.

Some of the HPF 1 features, e.g., the forall statement and construct, were dropped because they have been

incorporated into Fortran 95. The current compilers for HPF, including the PGI compiler, version 2.11, used

for generating the performance figures in this paper, support the features in HPF 1 only and use Fortran 90

as the base language.

We have provided only a brief description of some of the features of HPF. A full description can be found

in [13] while a discussion of how to use these fcaturcs in various applications can be found in [6, 19, 20].

Conversion of the Code to HPF. The original code for the Bratu problem was a Fortran 77 imple-

mentation of the NKS method of Section 2, written by one of us (DEK), which pre-dated the PETSc NKS

implementation. In this subsection we describe the changes made to the Fortran 77 code to port it to HPF,

and the reasons for the changes.

Fortran's sequence and storage association models are natural concepts only on machines with linearly

addressed mcmory and cause inefficiencies when the underlying memory is physically distributed. Since

HPF targets architectures with distributed memories, it does not support storage and sequence association

for data objects that have been cxplicitly mapped. The original code relied on Fortran's model of sequence

association to re-dimension arrays across procedure in order to allow the problem size, and thus the size of

the data arrays, to be determined at runtime. The code had to be rcwrittcn so that the sizes of the arrays

arc hardwired throughout and thcre is no redimcnsioning of arrays across procedure boundaries. The code

could have been converted to use Fortran 90 allocatable arrays, however, we chose to hardwire the sizes of the

arrays. This implied that the code needed to be recompiled whenever the problem size was changed. (This is,

of course, no significant sacrifice of programmer convenience or code generality when accomplished through

parameter and include statements and make:files. It does, howcvcr, cost the time of recompilation.)

During the process of conversion, some of the simple do loops were converted into array statements;

however, most of the loops werc left untouched and were automatically parallelized by PGI's HPF compiler.

1HPF compilers are young and continually improving. A successor to the version available to us in this study is supposed to

remove scalarization of multidimensional arrays and unnecessary checks for data mapping between procedures, both of which

could improve performance on our test problem.

That is, we did not need to use either the forall construct or the independent directive for these loops

they were simple enough for the compiler to analyze and parallelizeautomatically. Along with this,two

BLAS library routines used in the original code, ddot and dnrm2, were explicitly coded since the BLAS

librarieshave not been converted for use with HPF codes.

The original solver was written for a system of equations with multiple unknowns at each grid point.

To specialize for a scalar equation we deleted the corresponding inner loops and the corresponding indices

from the field and coefficientarrays. Wc thereby converted four-dimensional Jacobian arrays (in which

was expressed each nontrivial dependence of each residual equation on each unknown at each point in two-

dimensional space) into two-dimensional arrays. This, in turn, reduced some dense point-block linear algebra

subroutines to scalar operations, which we inlined.

Wc also rewrote the matrix multiplication routine to utilizea single do loop instead of nine small loops,

each of which took care of a differentinterioror side boundary or corner boundary stencilconfiguration. Some

trivialoperations are thereby added near boundaries, but checking proximity of the boundary and setting

up multiple do loops are avoided. The original nine loops caused the HPF compiler to generate multiple

communication statements. Rewriting the code to use a single do loop allowed the compiler to generate the

optimal number of communication statements even though a few extra values had to be communicated.

The sequential ILU routine in the original code was converted to subdomain-block ILU to conform to

the simplest preconditioning option in the PETSc library. This was done by strip-mining the loops in the

x- and y-directions to run over the blocks, with a sequential ILU within each block. Even though there

were no dependencies across the block loops, the HPF compilcr could not optimize the code and generated

a locality check within the internal loop. This caused unnecessary overhead in the generated code. Wc

avoided the overhead by creating a subroutine for the code within the block loops and declaring it to be

extrinsic. Since the HPF compiler ensures that a copy of an extrinsic routine is called on each processor,

no extraneous communication or locality checks now occur while the block sequential ILU code isexecuted

on each processor.

The HPF distribution directives were used to distribute the arrays by block. For example, when exper-

imenting with a one-dimensional distribution, a typical array is mapped as follows:

real, dimension (nxi,nyi) :: U

!HPF$ distribute (*, block) :: U

. . .

do i = 1, nxi

do j = I, nyi

U(i,j) = ...

end do

end do

The above distribute directive maps the second dimension of the array U by block, i.e.,the nyi columns

of the array U are block-distributed across the underlying processors. As shown by the do loops above,

the computation in an HPF code is expressed using global indices independent of the distribution of the

arrays. To change the mapping of the array U to a two-dimensional distribution, the distribution directive

needs to be modified as follows, so as to map a contiguous sub-block of the array onto each processor in a

two-dimensional array of processors:

real, dimension (nxi,nyi) :: U

!HPF$ distribute (block, block) :: U

10

do i = 1, nxi

do j = i, nyi

U(i,j) ---...

end do

end do

The code expressing the computation remains the same; only the distribute directive itself is changed. It

is the compiler's responsibility to generate the correct parallel codc along with the necessary communication

in each case.

Most of the revisions discussed above do nothing morc than convert Fortran code written for sequential

execution into an equivalent sequential form that is easier for the HPF compiler to analyze, thus allowing it

to generate more efficient parallel code. The only two exccptions are: (a) the mapping directives, which arc

comments (see code example above) and arc thus ignored by a Fortran 90 compiler, and (b) the declaration

of two routines, the ILU factorization and forward/backsolvc routines, to be extrinsic. We are currcntly

investigating whether the use of the extrinsic feature can be avoided thus leaving a purely Fortran 90 code.

The HPF mapping directives, themsclvcs, constitute only about 5% of the line count of the total code.

The compilation command, showing the autoparallclization switch and the optimization level used in

the performance-oriented executions, is:

pghpf -Mpreprocess -Mautopar -03 -o bratu bratu.hpf

5. Performance Comparisons. To evaluate the effectiveness of language and library paradigms, we

compare the demonstration version of the Bratu problem in the PETSc source-code distribution with an

algorithmically equivalent version of this numerical model and solver in HPF. All performance data reported

in this study is measured on an IBM SP2 at the NASA Langley Research Center. To attempt to eliminate

"cold start" memory allocation and I/O effects, for each timed observation, wc makc two passes over the

entire code (by wrapping a simple do loop around the entire solver) and report the second result. To

attempt to eliminate network congestion effects, we run in dedicated mode (by enforcing that no other users

arc simultaneously running on the machine). To spot additional "random" effects, we measure cach timing

four times and use the average of the four values. Wc also check for outliers, which our precautions render

extremely rare, and discard them.

The variations in timings between the first and second passes is displayed in Fig. 5.1, and is more

significant in PETSc than in HPF. The main reason for this is that the executing PETSc program passes

through a lot of subroutines scattered throughout a very large executable image. This means that many

more pages of program image are read from disk while PETSc runs than when the HPF program runs. On a

second (and other subsequent) pass, the relevant program pages are already in memory and do not generate

the disk I/O that accounts for the half- to full-second difference between the PETSc timings.

Cases without Preconditioning. Wc discuss first experiments for simulations without any precon-

ditioning. Execution timcs and speedups for computations on a 256 × 256 grid for this case are shown in

Figs. 6.1 and 6.2. Results are shown for one-dimensional and two-dimensional blocking in HPF and PETSc

on up to 32 processors. These adjectives correspond to the (*,block) and (block,block) distributions,

respectively, in HPF notation. With the exception of the 32-processor case, one-dimensional blocking gives

better timings than two-dimensional blocking for HPF. In contrast, two-dimensional blocking was slightly

better for PETSc. For large numbers of processors, one-dimensional blocking results in higher communica-

tion volume, but each processor has at most two neighbors. On the other hand, communication volume is

ll

6.0 -

5.0 ':'

g

_ 4.0
o

W

3.0

, HPF-lst pass
_) HPF - 2nd pass

PETSc - 1st pass
F] PETSc - 2rid pass

J

5'

LJ I1

2.0 1 2 3 4

Observation number

FlC. 5.1. Variation of execution times, over four independent submissions, for first and second passes through

same complete nonlinear solutton process

lower in two-dimensional blocking but each processor may have up to four neighbors. On 16 processors, we

observed speedup of approximately 7.0 for HPF and about 8.5 for PETSc. Thc dependence of execution

times for the HPF implementation on thc specified data distribution are highlighted in Fig. 6.3, where exe-

cutions were made on sixteen processors with varying subdomain granularity in the x and y directions. All

other parameters remained the same as in Fig. 6.1. For the HPF code, thc execution time with one subdo-

main in the y-direction, i.e., (block, *) distribution, was about twice that of the case with one subdomain

in x-direction, i.e., (*,block) distribution. We believe that this is duc to the column-major storage order

of Fortran, which leads to non-unit stride access for both computation and communication in the "wrong"

direction. Differences in PETSc execution times for different data distributions are small compared to HPF.

We also report experiments in which the memory-per-node remains constant as the number of processors

is increased (so-called Gustafson scaling). We solve the unpreconditioned problem on 64 × 64, 128 × 128,

and 256 x 256 grids on 1, 4, and 16 processors, respectively. Timing results are shown in Fig. 6.4. Note

that our physical domain size is fixed, and therefore mesh resolution is finer as the number of processors

is increased. This results in a larger condition number and higher numbers of iterations to reach the same

level of convergence. To isolate communication overhead, we made simulations with a fixed 40 GMRES

steps for 65536 grid points per processor (i.e., 256 × 256, 512 × 512, and 1024 × 1024 grids on 1, 4, and 16

processors, respectively). Results are shown in Figs. 6.5 6.6. On 16 processors, thc bcst scaled efficiencies

are about 90% for HPF (one-dimensional blocking) and about 70% for PETSc (two-dimensional blocking).

Of course, since the PETSc single-node execution time is about 60% of that of the HPF execution time,

PETSc performs better in an absolute sense at 16 processors, despite its poorer self-scaling, but the self-

scaling data are interesting, in conjunction with runtime profiling, for further performance debugging. As

shown in Fig. 6.7, estimated overheads for communication as fractions of computations were higher in the

more computationally performant PETSc than in HPF. For the purpose of this figure, we made the simple

assumption that computation time remains the same as the single processor case and additional execution

times on multiple processors are because of overheads associated with synchronous communications.

12

Cases with Preconditioning. We next examine subdomain-block Jacobi ILU preconditioning, a zero-

communication form of Additive Schwarz. A popular way of parallelizing this solver is to keep number of

subdomains same as the number of processors, thereby using the best algorithm for each number of processors,

even though the preconditioner thereby changes. The effect of the changing-strength preconditioner and the

effect of the parallel overhead are often separated into an algorithmic efficiency and an implementation
T(1)

efficiency. We define the overall parallel efficiency for p processors in the usual manner: T](p) = v---T_-)(P)' where

T(p) = I(p) • C(p), is the overall execution time, I(p) the number of iterations, and C(p) the average cost

per iteration. The algorithmic efficiency, a measure of the robustness of the preconditioning with respect to

The implementation efficiency is the remaining factor,increasing granularity, is defined as _/n_,n_,. -- I(;)'

?_irnpl = p.C(p)'C(1) SO that Z] _--- _numer(P) × ?Timpl(P). In practice, T(p) and I(p) are measured and C(p) is
inferred.

In this study we performed simulations in two ways: (a) with number of subdomains same as number

of processors (greater algorithmic efficiency with fewer processors), and (b) number of subdomains fixed

(unchanging algorithmic efficiency as the number of processors varies). Results are shown in Figs. 6.8 6.10.

As in the case of no preconditioning, one-dimensional blocking gives better timings for HPF, while two-

dimensional blocking gives slightly better results for PETSc. With the number of subdomains frozen at 32,

both HPF and PETSc give speedups of approximately 13 on 16 processors. On 32 processors speedup is

approximately 20 for HPF and approximately 21 for PETSc.

As with the unpreconditioned case, we also show speedup results for a fixed amount of memory (and

computation) on a processor by taking a predetermined number (40) of GMRES steps and maintaining a

fixed number of grid points per node. As shown in Fig. 6.11, on 16 processors, scaled speed up for HPF

is approximately 14 and for PETSc it is approximately 11. Except for two-dimensional blocking in HPF,

overheads for communication as fraction of computation (Fig. 6.12) were lower in ILU-preconditioned case

than in the unpreconditioned case (Fig. 6.7), reflecting the greater useful computational work per iteration

of the preconditioned version. Communication overheads are about as exposed on this scalar problem, with

work per iteration only linear in the number of degrees of freedom per processor, as one sees using PETSc.

6. Conclusions. For structured-grid PDE problems, contemporary MPI-based parallel libraries and

contemporary compilers for high-level languages like HPF are easy to use and capable of comparable good

performance, in absolute wall time and relative efficiency terms, on distributed-memory multiprocessors.

The target applications must possess an intrinsic concurrency proportional, at least, to the intended pro-

cess granularity. This is an obvious caveat, but requires emphasis for parallel languages, since the same

source code can be compiled for either serial or parallel execution, whereas a parallel library automatically

restricts attention to the concurrent algorithms provided by the library. No compiler will increase the latent

concurrency in an algorithm; it will at best discover it, and the efficiency of that discovery is apparently

at a high level for structured index space scientific computations. The desired load-balanced concurrency

proportional to the intended proccss granularity may always be obtained with the Newton-Krylov-Schwarz

family of implicit nonlinear PDE solvers employed herein through decomposition of the problem domain.

With either a parallel language or a parallel library, the applications programmer with knowledge of

data locality should or must become involved in the data distribution. As on any message-passing multi-

processor, performance is limited by the ratio of useful arithmetic operations to remote memory references.

The relatively easy-to-precondition, scalar model problem employed in this paper has a relatively low ratio,

compared with harder-to-precondition, multicomponent problems, which perform small dense linear algebra

computations in their inner loops. It will therefore be necessary to compare both paradigms in more realistic

13

settings andalsoto awaitcompiler/runtimesystemswith capabilitiesforblock-structuredandunstruc-
turedproblems-- beforedrawingbroaderconclusionsabouttheparadigmof choice.It hasalreadybeen
demonstrated(inthereferences)thatthePETSclibrarygracefullyaccommodatessuchrealisticsettings,and
that it requiresamodestamountofuserrecodingandtuning,relativeto a legacycodefreeof side-effects,
to takefull advantageof thecapabilitiesof high-performancehardware,suchastheSP2,theOrigin,and
theT3E.Welookforwardin similarfuturestudiesto seeingwhetherandhowmuchof this burdencanbe
liftedbywritingin ahigh-levellanguage.

Acknowledgments.Theauthorsaregratefulto JudithUtley,CSCCorp.,onassignmentto theInfor-
mationSystemsandServicesDivisionat theNASALangleyResearchCenter,forgraciouslyandvigilantly
accommodatingtheirrequestsfor dedicatedSP2periods,andalsoto fellowSP2usersfor their periodic
sacrifices.

14

REFERENCES

[1]B.M. Averick,R.G.Carter,J. J.More,andC. Xue,1992,The MINPACK-2 Test Problem Collection,

MCS-P153-0692, Mathematics and Computer Science Division, Argonne National Laboratory.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, 1996, PETSc 2.0 User Manual, ANL-

95/11, Mathematics and Computer Science Division, Argonnc National Laboratory; see also

http ://www.mcs. anl. govlpet sc/.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, 1997, E_eient Management of Parallelism in

Object-Oriented Numerical Software Libraries, in "Modern Software Tools in Scientific Computing",

E. Argc, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser.

[4] P. E. Bjorstad, M. Espedal, and D. E. Keyes, cds., 1997, "Domain Decomposition Methods in Com-

putational Science and Engineering" (Proceedings of the 9th Intcrnational Conference on Domain

Decomposition Methods, Bergen, 1996), Wiley, to appear.

[5] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. E. Melvin, and D. P. Young, 1996, Parallel Newton-Krylov-

Schwarz Algorithms for the Transonic Full Potential Equation, SIAM J. Sci. Comp., to appear; see

also ICASE TR 96-39.

[6] B. Chapman, P. Mehrotra, and H. Zima, 1994, Extending HPFfor Advanced Data Parallel Applications,

IEEE Parallel and Distributed Technology, Fall 1994, pp. 59 70.

[7] D. E. Culler, J. P. Singh, and A. Gupta, 1997, "Parallel Computer Architecture", Morgan-Kaufman

Press, to appear.

[8] R. Dembo, S. Eisenstat, and T. Steihaug, 1982, Inexact Newton Methods, SIAM J. Numer. Anal.

19:400 408.

[9] J. E. Dennis and R. B. Schnabel, 1983, "Numerical Methods for Unconstrained Optimization and

Nonlincar Equations", Prentice-Hall.

[10] M. Dryja and O. B. Widlund, 1987, An Additive Variant of the Alternating Method for the Case of

Many Subregions, TR 339, Courant Institute, New York University.

[11] W. D. Gropp and D. E. Keyes, 1989, Domain Decomposition on Parallel Computers, Impact of Comp.

in Sci. and Eng. 1:421 439.

[12] W. D. Gropp_ D. E. Keyes, L. C. McInnes, and M. D. Tidriri, 1997, Parallel Implicit PDE Computations:

Algorithms and Software, in "Parallel Computational Fluid Dynamics '97" (Proceedings of Parallcl

CFD'97, Manchester, 1997), A. Ecer, D. Emerson, J. Periaux, and N Satofuka, eds., Elsevicr, to

appear.

[13] High Performance Fortran Forum, 1997, High Performance Fortran Language Specification, Version 2._,

see also http ://www.crpc. rice. edu/HPFF/home, html.

[14] D. E. Kaushik, D. E. Keyes_ and B. F. Smith, 1997, On the Interaction of Architecture and Algorithm

in the Domain-based Parallelization of an Unstructured Grid Incompressible Flow Code, in "Pro-

ceedings of the 10th International Conference on Domain Decomposition Methods", C. Farhat, et

al., eds., Wiley, to appear.

[15] D. E. Keyes, 1995, A Perspective on Data-Parallel Implicit Solvers for Mechanics, Bulletin of the U. S.

Association of Computational Mechanics 8(3), pp. 3 7.

[16] D. E. Keyes and M. D. Smooke, 1987, A Parallelized Elliptic Solver for Reacting Flows, in "Parallel

Computations and Their Impact on Mcchanics"_ A. K. Noor, ed., ASME, pp. 375 402.

[17] D. E. Keyes, D. S. Truhlar, and Y. Saad, cds., 1995, Domain-based Parallelism and Problem Decompo-

15

100 _ - •

UJ

_ HPF - 1D blocking

(_ _._=HPF - 2D blocking

f_ PETSc - 1D blocking

G,_ "_-_ "_. i+ - x_ PETSc -2D blocking

10

!

i

1 Io

Number of Processors

FIc. 6.1. Scaling of execution times (J_xed-size problem, 256 x 256, no preconditioning, 1 to 3_ processors)

sition Methods in Science and Engineering, SIAM.

[18] C. H. Koclbcl, D. B. Loveman, R. S. Schrciber, G. L. Steele, and M. E. Zosel, 1994, "Tile High

Performance Fortran Handbook", MIT Press.

[19] P. Mehrotra, J. Van Rosendalc, and H. Zima, 1997, High Performance Fortran: History, Status and

Future, Parallel Computing, to appear.

[20] K. P. Roe and P. Mehrotra, 1997, Implementation of a Total Variation Diminishing Scheme for the

Shock Tube Problem in High Performance Fortran, Proceedings of the 8th SIAM Conference on

Parallel Processing, Minneapolis, SIAM (CD-ROM).

[21] Y. Saad and M. H. Schultz, 1986, GMRES: A Generalized Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp. 7, pp. 865 869.

16

......
:) _, HPF - 2D blocking / I

PETSc - 1D blocking

10 ' _` _-] PETSc - 2D blocking /

_,0.,
....

i

lJ/fJ_ , _

1 10

Number of Processors

FIe. 6.2. Self-speedup (fixed-size problem, 256 x 256, no preconditioning, 1 to 32 processors)

10.0 - _ _- . T " " -

8,0

¢n -•

= 6.0 -'_••

:'= ,:_ -_ HPF
_ [5 _] PETSc

x

4.0

..... L...............

2"01.0 6.0 11.0 16.0

Number of subdomains in X direction

FIG. 6.3. Effect of data blocking (fixed-size problem, 256 x 256, no preconditioning, 16 processors)

17

6.0

5.0

4.0

¢0

E
"= 3.0

,,x, 2.0

1.0

--_ HPF - 10 blocking
,:_- () HPF - 2D blocking

,_', A pETSc - 1D btocking
: _ _i pETSc - 2D blocking

f

I

S:_ _--•- -

_ f

0.0 0 4 8 12 16

Number of Processors

FIG. 6.4. Gustafson scaling of execution times (constant-size blocks per processor, laryest case 256 x 256, no

preconditioning)

lit

13.0 -- ' -

11.0

9.0

i

f

7.0 ¸
J

L3

_ HPF - 1D blocking

:_ © HPF - 2D blocking

A A P ETSc - 1D blocking
:_ _] PETSc - 2D blocking

5.0 0 4 8 12 16

Number of Processors

Fla. 6.5, E_ecution time for 40 GMRES steps (no preconditioning)

18

_9

16.0

12.0

8.0

4.0

' • HPF - 1D blocking

<_ HPF - 2D blocking

,,_. _, PETSc - 1D blocking

i÷ _] PETSc - 2D blocking

Ideal

.... !

4.0 8.0 12.0

Number of Processors

0,0 _ -

0.0 16.0

FIG. 6.6. Scaled speedup for _0 GMRES steps (no preconditioning)

0.6 ._ . 1 . -

0.4

E

>j 0.2

I-

._ HPF - 1D blocking

,; ;, ,;> HPF - 2D blocking

/_ /,. PETSc - 1 D blocking

L _ ; : PETSc - 2D blocking

,///.J•

4;'

0 4 8 12

Number of Processors

16

FIc, 6.7. Overhead estimate]or _0 GMRES steps (no preconditioning)

19

UJ

100 _- ' -

_ HPF -1D blocking ":,

, :_ ,1;. HPF -2D blocking "_ .-.._.. _

,_:_PETSc -1D blocking z_-

r_ _! PETSc -2D blocking

i
1 10

Number of Processors

Fro. 6.8. Scaling of execution times (fixed-size problem, 512 x 512, block Jacobi IL U preconditioning with # blocks

equal to # processors, from I to 32)

_G

=x
uJ

100 _- _ - I

_.>..

10

I

_ HPF - 1D blockingv "_'_ 4

:,. _ PETSc -1D blocking _'_"_ -: : i

L_ i ,PETSc -2D blocking

J
1 10

Number of Processors

Fie. 6.9. Scaling of execution times (fixed-stze problem, 512 x 512, block Jacobi IL U preconditioning with # blocks

fixed at 32, and variable blocks per processor}

2O

_': _' HPF - 1D blocking

D, _ PETSc -10 blocking
24.0

l! _i PETSc -2D blocking / 1

-- ,de,, /

',.o 16.0

8.0

0.0
0 8 16 24 32

Number of Processors

FIG. 6.10. Self-speedup (fixed-size problem, 512 x 512, block Jacobi ILU preconditioning with/f blocks fixed at 82,

and variable blocks per processor)

16.0 _ r ,-- r

- _ HPF - 1D blocking _f'_

:_- _ HPF - 2D blocking / x" L

12.0 >, _\ PETSc - 1D blocking / //

r_ _] PETSc - 2D blocking /. _f" ._

/'_Jl/ J /

8.0 / /_:

(*9 -"

4.0

0.0 0 4 8 12 16

Number of Processors

FIC. 6.11. Scaled speedup for _0 GMRES steps (block Jaeobi ILU preconditioning)

21

0.4

o
I

I'--

==
"_ 0.2

O

t'-

T

• HPF - 1 D blocking ,_I,
,_ C, HPF - 2D blocking

,,\ /_ PETSc - 1D blocking _

- i _ PETSc - 2D blocking z _....

f

/
/ -_"

0.0 _ -
0 4 8

Number of Processors

I

12 " • i6

FIc. 6.12. Overhead estimate for ,_ 0 GMRES steps (block Jacobi IL U preconditioning)

22

i

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reportmg burden for th_s collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this

collection of information, including sug£estlons for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Oavls Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. OC 20503

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1997 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Comparison of PETSC Library and HPF Implementations of an

Archetypal PDE Computation

6. AUTHOR(S)

M. Ehtesham Hayder

David E. Keyes

Pi_'ush Mehrotra

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 97-72

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-97-206278

ICASE Report No. 97-72

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

Submitted to Journal for Advances in Engineering Software

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

13. ABSTRACT (Maximum 200 words)

Two paradigms for distributed-memory parallel computation that free the application programmer from the details

of message passing are compared for an archetypal structured scientific computation a nonlinear, structured-

grid partial differential equation boundary value problem using the same algorithm on the same hardware.

Both paradigms, parallel libraries represented by Argonne's PETSc, and parallel languages represented by the

Portland Group's HPF, are found to be easy to use for this problem class, and both are reasonably effective in

exploiting concurrency after a short learning curve. The level of involvement required by the application programmer

under either paradigm includes specification of the data partitioning (corresponding to a geometrically simple

decomposition of the domain of the PDE). Programming in SPMD style for the PETSc library requires writing

the routines that discrctize the PDE and its Jacobian, managing subdomain-to-processor mappings (affine global-

to-local index mappings), and interfacing to library solver routines. Programming for HPF requires a complete

sequential implementation of the same algorithm, introducing concurrency through subdomain blocking (an effort

similar to the index mapping), and modest experimentation with rewriting loops to elucidate to the compiler the

latent concurrency. Correctness and scalability are cross-validated on up to 32 nodes of an IBM SP2.

14. SUBJECT TERMS

parallel languages, parallel libraries, parallel scientific computing, nonlinear elliptic

boundary value problems

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

_ISN 7540-01- 280-5S00

118, SECURITY CLASSIFICATION lg. SECURITY C'LASSIFICATIOI_

OF THIS PAGE OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

27

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

